Ortho amino carbonitriles as precursor for the synthesis of some novel heterocyclic compounds ${ }^{\dagger}$

V. Peesapati*, K. Anuradha and S. Suresh Babu
Industrial Chemistry, Centre for Environment, JNT University, Mahavir Marg,

Hyderabad - 500028, India
Synthesis and characterisation of some new [1,2,4]triazoles 8,9 and 11 starting from a useful synthon 2-amino-5,6-dihydro-4H-benzo[3,4]cyclohepta[b]thiophene-1-carbonitriles have been reported.

A literature survey reveals that various 1,2,4-triazoles and the N -bridged heterocycles derived from them possess diverse pharmacological activities. ${ }^{1,2}$ Prompted by these observations and in continuation of our work in the synthesis of biologically active nitrogen and sulfur containing heterocycles, ${ }^{3}$ we now wish to report the conversion of the 2 -amino-1-carbonitrile (3) into derivatives of a new heterocyclic system incorporating the pyrimidine moiety.

We envisage the 2 -amino-1-carbonitrile $\mathbf{3}$ as a general precursor for the synthesis of a broad range of biologically active triazolo pyrimidines. The key intermediate $\mathbf{3}$ used in our experiments was readily prepared according to a described procedure ${ }^{4}$ starting from the malononitrile 2, which in turn was obtained from the ketone $\mathbf{1}$ under standard Knoevenagel conditions. Strong absorption of infrared peaks at 2210 and $3330 \mathrm{~cm}^{-1}$ clearly indicates the presence of nitrile and amino groups respectively in $\mathbf{3}$. The carbonitrile $\mathbf{3}$ was reacted with triethyl orthoformate to yield the ethoxy methyleneamino derivative 4 . The structure of $\mathbf{4}$ was assigned by the presence of a triplet at $\delta 1.45$ and a quartet at $\delta 4.50$ corresponding to the protons of the ethoxy group in ${ }^{1} \mathrm{H}$ NMR, along with the expected signals for methylene and aryl hydrogen atoms.
Reaction of $\mathbf{4}$ with 4-chloroaniline in ethanol at room temperature effected cyclisation to give $\mathbf{5}$. The IR spectrum of $\mathbf{5}$ showed the characteristic bands at $3250(\mathrm{NH})$ and $1637 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{N})$ and the absence of $\mathrm{C} \equiv \mathrm{N}$ band. Compound 5 underwent Dimroth rearrangement to the corresponding fused arylaminopyrimidine 6 on treatment with aq. NaOH . The Dimroth rearrangement in which alkyl and aryl groups apparently migrate from one of the ring nitrogens to the imino group of a 4-iminopyrimidine moiety has been reported in several cases. ${ }^{5}$

12-Imino-2,3-dimethyl-6,7,11,12-tetrahydro-5 H benzo[$\left.3^{\prime}, 4^{\prime}\right]$ cyclohepta $\left[2^{\prime}, 1^{\prime}: 4,5\right]$ thieno[$\left.2,3-d\right]$ pyrimidine-11amine 7 , obtained by the reaction of 4 with hydrazine hydrate, was further converted into triazolo pyrimidine derivative $\mathbf{8}$ by treatment with triethyl orthoformate in dimethyl formamide. The formation of a triazole ring involving both amino and imino groups was evident by the absence of absorption bands due to either of these groups in the infrared spectrum of $\mathbf{8}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$ also showed the presence of two protons at $\delta 9.30$ and 8.38 as singlets (at $\mathbf{2}$ and $\mathbf{5}$ positions) and the other aromatic protons appeared as a multiplet at δ 7.20-7.75

Condensation of 7 with acetic anhydride in acetic acid yielded two crystalline compounds $\mathbf{9}$ and $\mathbf{1 0}$. These were separated on a neutral alumina column followed by preparative TLC to give a major (more polar) and minor (less polar) product. The structures of the compounds $\mathbf{9}$ and $\mathbf{1 0}$ were assigned

[^0]on the basis of the ${ }^{1} \mathrm{H}$ NMR spectra. The IR spectrum of $\mathbf{1 0}$ exhibited absorption bands at 3187 and $1660 \mathrm{~cm}^{-1}$ due to the -NH-CO- functionality. Reaction of 7 with 4 -chlorobenzaldehyde yielded the pyrimidine derivative 11. The structure of compounds 3-11 was confirmed by elemental analysis and spectral data.

Experimental

M.p.s are uncorrected. IR spectra are recorded on a Perkin Elmer FT IR 1605 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra are recorded in CDCl_{3} on a Varian FT 80 A spectrometer with TMS as an internal standard and mass spectra are taken on a VG micromass 7070 H mass spectrometer.

2-(5-Dicyanomethylene-2,3-dimethyl-6,7,8,9-tetrahydro-5H-benzo[a]cyclohepten-5-ylidene)malononitrile (2a): 2,3-Dimethyl-6,7,8,9-tetrahydrobenzocyclohepten-5-one ${ }^{6}$ in ethanol was treated with malononitrile and triethyl amine as described. ${ }^{4}$ The crude product $\mathbf{2 a}(88 \%)$, which was used for next step without further purification. $v_{\text {max }}$ (film): $2208(\mathrm{CN}) \mathrm{cm}^{-1}$.

Reagents: (i) Malononitrile, $\mathrm{Et}_{3} \mathrm{~N}$, EtOH , reflux; (ii) sulfur, morpholine, ethanol, reflux; (iii) Triethyl orthoformate, reflux; (iv) p-Cl-aniline, ethanol, R.T.; (v) $1 \mathrm{~N} \mathrm{NaOH}, 90^{\circ} \mathrm{C}$; (vi) Hydrazine hydrate, R.T.; (vii) triethyl orthoformate, DMF, $90^{\circ} \mathrm{C}$; (viii) $\mathrm{Ac}_{2} \mathrm{O}$, AcOH, reflux; (ix) p-chlorobenzaldehyde, pyridine, reflux.

2-(5-Dicyanomethylene-3-methyl-6, 7, 8, 9-tetrahydro-5H-benzo[a]cyclohepten-5-ylidene)malononitrile (2b): Obtained as liquid, yield (87%), $v_{\text {max }}$ (film): $2210(\mathrm{CN}) \mathrm{cm}^{-1}$.

2-Amino-8,9-dimethyl-5,6-dihydro-4H-benzo[3,4]cyclohepta[b] thiophene-1-carbonitrile (3a): Compound 3a was prepared from 2a (8.5 mmole), sulfur (0.285 g) and morpholine (five drops) in dry ethanol according to the procedure described ${ }^{4}$ (92% yield), m.p. $98-100^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}): 3331,3202\left(\mathrm{NH}_{2}\right), 2210(\mathrm{CN}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}} 2.20$ $\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right) 2.30\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{CH}_{3}\right), 2.45\left(2 \mathrm{H}, \mathrm{t}, 4-\mathrm{CH}_{2}\right), 2.58(2 \mathrm{H}$, $\left.\mathrm{t}, 6-\mathrm{CH}_{2}\right), 4.65[2 \mathrm{H}$, br NH (exch.)], $7.00(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H})$ and $7.25(1 \mathrm{H}$, $\mathrm{s}, 10-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (rel intensity) $268\left(\mathrm{M}^{+}, 100\right), 253(50), 238(29), 165$ (13), 119 (19), 83 (20), and 57 (25) [Found : C, 71.66; H, 5.94; N, 10.41. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{C}, 71.64 ; \mathrm{H}, 5.97 ; \mathrm{N}, 10.45 \%$].

2-Amino-9-methyl-5,6-dihydro-4H-benzo[3,4]cyclohepta[b] thiophene-1-carbonitrile (3b): yield (91%); m.p. $80-82^{\circ} \mathrm{C}$; v (KBr): 3333, $3200\left(\mathrm{NH}_{2}\right), 2212(\mathrm{CN}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}} 2.21\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right)$, $2.32\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.45\left(2 \mathrm{H}, \mathrm{t}, 4-\mathrm{CH}_{2}\right), 2.62\left(2 \mathrm{H}, \mathrm{t}, 6-\mathrm{CH}_{2}\right), 4.80[2 \mathrm{H}$, br, NH (exch.)] and 7.00-7.30 (3H, m, aromatic); m / z (rel intensity) $254\left(\mathrm{M}^{+}, 100\right), 239$ (49), 224 (24), 152 (11), 60 (11) and 44 (61) [Found : C, 70.85; H, 5.48; N, 11.00. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}$ requires C , 70.87; H, 5.51; N, 11.02\%]

2-[(E)-1-ethoxymethyleneamino]-8,9-dimethyl-5,6-dihydro-4H-benzo[3,4]cyclohepta[b]thiophene-1-carbonitrile (4a): A solution of 3a ($1.0 \mathrm{~g}, 3.73 \mathrm{mmole}$) in triethyl orthoformate (6 ml) was heated under reflux for 2 h and worked-up in the usual way. Recrystallised from petroleum ether to give $\mathbf{4 a}(1.1 \mathrm{~g}, 91 \%)$, m.p. $115-117^{\circ} \mathrm{C} ; \mathrm{v}_{\mathrm{n}}$ $(\mathrm{KBr}): 2216(\mathrm{CN}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}} 1.45\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right), 2.25\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right)$, $2.34\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}-\mathrm{CH}_{3}\right), 2.58\left(4 \mathrm{H}, \mathrm{t}, 4-\& 6-\mathrm{CH}_{2}\right), 4.50\left(2 \mathrm{H}, \mathrm{q}, \mathrm{OCH}_{2}\right)$, $7.05(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.32(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H})$ and $8.04(1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{CH}) ; \mathrm{m} / \mathrm{z}$ (rel intensity) $324\left(\mathrm{M}^{+}, 42\right), 296(23), 268$ (100), 253 (63), 238 (35), 165 (16), 64 (23) and 57 (74) [Found: C, 70.34; H, 6.12; N, 8.68. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{C}, 70.37 ; \mathrm{H}, 6.17 ; \mathrm{N}, 8.64 \%$].
2-[(E)-1-ethoxymethyleneamino]-9-methyl-5,6-dihydro-4H-benzo[3,4]cyclohepta[b]thiophene-1-carbonitrile (4b): yield $(0.54 \mathrm{~g}$, $88 \%)$, m.p. $100-102^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}): 2212(\mathrm{CN}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}: 1.42(3 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{CH}_{3}\right), 2.25\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 2.30\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.58(4 \mathrm{H}, \mathrm{t}, 4 \& 6-$ $\left.\mathrm{CH}_{2}\right), 4.52\left(2 \mathrm{H}, \mathrm{q},-\mathrm{OCH}_{2}\right), 7.00-7.42(3 \mathrm{H}, \mathrm{m}$, aromatic $)$ and 8.00 $(1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{CH}) ; \mathrm{m} / \mathrm{z}$ (rel intensity) $310\left(\mathrm{M}^{+}, 100\right), 282(26), 254$ (35), 239 (39), 152 (12) and 57 (10) [Found : C, 69.64; H, 5.79; N, 9.10. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{C}, 69.67 ; \mathrm{H}, 5.81 ; \mathrm{N}, 9.03 \%$].

11-(4-Chlorophenyl)-2,3-dimethyl-6,7,11,12-tetrahydro-5Hbenzo[$3^{\prime}, 4^{\prime}$]cyclohepta $\left[2^{\prime}, 1\right.$ ':4,5]thieno[2,3-d]pyrimidin-12-imine (5a): A mixture of $4 \mathbf{a}(0.1 \mathrm{~g}, 0.309 \mathrm{mmole}), 4$-chloroaniline $(0.078 \mathrm{~g}$, 0.617 mmole) and absolute ethanol (2 ml) was stirred at room temperature overnight. After usual work-up, the crude product was recrystallised from petroleum ether / benzene yielded the product 5a ($0.115 \mathrm{~g}, 92 \%$); m.p. $>270^{\circ} \mathrm{C}$ (decomp.); $\mathrm{v}_{\max }(\mathrm{KBr}): 3290$ (NH), $1637(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}: 2.25-2.35\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{CH}_{2}\right), 2.40(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}-$ $\left.\mathrm{CH}_{3}\right), 2.60\left(4 \mathrm{H}, \mathrm{t}, 5 \& 7-\mathrm{CH}_{2}\right), 7.10-7.40(6 \mathrm{H}, \mathrm{m}$, aromatic), 8.30 [1H, br, NH (exch.)] and $8.60(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (rel intensity) 405 $\left(\mathrm{M}^{+}, 12\right), 407\left(\mathrm{M}^{+}+2,4.5\right), 235(25), 155(23), 127(30), 85(55), 71$ (74.5) and 57 (100) [Found : C, 68.10; H, 4.90; N, 10.34. $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{~S}$ requires C, $68.15 ; \mathrm{H}, 4.94 ; \mathrm{N}, 10.37 \%$].
11-(4-Chlorophenyl)-2-methyl-6,7,11,12-tetrahydro-5Hbenzo[3',4']cyclohepta [2',1':4,5]thieno[2,3-d]pyrimidin-12-imine (5b): yield $0.12 \mathrm{~g}(94 \%)$, m.p. $172-174^{\circ} \mathrm{C}$; v \qquad (KBr): $3290(\mathrm{NH})$, $1635(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}: 2.25-2.35\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{CH}_{2}\right), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.62\left(4 \mathrm{H}, \mathrm{t}, 5 \& 7-\mathrm{CH}_{2}\right), 7.10-7.45(7 \mathrm{H}, \mathrm{m}$, aromatic), $8.32[1 \mathrm{H}, \mathrm{br}$, NH (exch.)] and $8.60(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (rel intensity) $391\left(\mathrm{M}^{+}, 60\right)$, 393 ($\mathrm{M}^{+}+2,24$), 390 (100), 254 (10), 127 (8), 85 (15), 71 (22), 57 (32) and 44 (31) [Found : C, 67.55; H, 4.54; N, 10.69. $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{~S}$ requires $\mathrm{C}, 67.52 ; \mathrm{H}, 4.60 ; \mathrm{N}, 10.74 \%$].

N(12)-(4-Chlorophenyl)-2,3-dimethyl-6,7-dihydro-5Hbenzo[$3^{\prime}, 4^{\prime}$]cyclohepta $\left[2^{\prime}, 1\right.$ ':4,5]thieno[2,3-d]pyrimidin-12-amine (6a): The 12 -imino compound $\mathbf{5 a}(0.1 \mathrm{~g})$ was suspended in 1 N aqueous sodium hydroxide (5 ml) and then warmed at $90^{\circ} \mathrm{C}$ on a water bath for 48 h to give $\mathbf{6 a}(50 \mathrm{mg}, 50 \%)$; m.p. $110-112^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}(\mathrm{KBr})$: $3273(\mathrm{NH}), 1638(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}: 2.25-2.35\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{CH}_{2}\right), 2.42$ $\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.58\left(4 \mathrm{H}, \mathrm{t}, 5-\& 7-\mathrm{CH}_{2}\right), 7.10-7.40(6 \mathrm{H}, \mathrm{m}$, aromatic), $8.05[1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$ (exch.)] and $8.70(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (rel intensity) $405\left(\mathrm{M}^{+}, 95\right), 407\left(\mathrm{M}^{+}+2,38\right), 404$ (100), 185 (8), 85 (15), 71 (21), 57 (32) and 44 (59) [Found: C, 68.10; H, 4.90; N, 10.35. $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClN}_{3}$ S requires C, $68.15 ; \mathrm{H}, 4.94 ; \mathrm{N}, 10.37 \%$].
N 12-(4-Chlorophenyl)-2-methyl-6,7-dihydro-5 Hbenzo[$\left.3^{\prime}, 4^{\prime}\right]$ cyclohepta[$2^{\prime}, 1$ ':4,5]thieno[2,3-d]pyrimidin-12-amine (6b): Yield ($35 \mathrm{mg}, 35 \%$), m.p. $118-120^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}$ (KBr): $3275(\mathrm{NH})$, $1632(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}: 2.20-2.30\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{CH}_{2}\right), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.55\left(4 \mathrm{H}, \mathrm{t}, 5\right.$ \& $\left.7-\mathrm{CH}_{2}\right), 7.10-7.45(7 \mathrm{H}, \mathrm{m}$, aromatic), $8.15[1 \mathrm{H}, \mathrm{br}$, NH (exch.)] and $8.74(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}) ; m / z$ (rel intensity) $391\left(\mathrm{M}^{+}, 99\right)$,
$393\left(\mathrm{M}^{+}+2,38\right), 149$ (22), 84 (100) and 57 (76) [Found: C, 67.54; $\mathrm{H}, 4.55 ; \mathrm{N}, 10.68 . \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{~S}$ requires $\mathrm{C}, 67.52 ; \mathrm{H}, 4.60 ; \mathrm{N}$, 10.74%].

12-Imino-2,3-dimethyl-6,7,11,12-tetrahydro-5H-benzo [$\left.3^{\prime}, 4^{\prime}\right]$ cyclohepta[$2^{\prime}, 1^{\prime}: 4,5$]thieno[2,3-d]pyrimidin-11-amine (7a): A mixture of $\mathbf{4 a}(0.5 \mathrm{~g}, 1.54 \mathrm{mmole})$ and hydrazine hydrate $(2.5 \mathrm{ml})$ was stirred at room temperature for 45 min and worked-up in the usual way to give $7 \mathbf{a}(0.42 \mathrm{~g}, 87 \%)$, m.p. $158-161^{\circ} \mathrm{C} ; \mathrm{v}_{\text {max }}(\mathrm{KBr}): 3327$, $3300,3215\left(\mathrm{NH}_{2}, \mathrm{NH}\right) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}: 1.98-2.05\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{CH}_{2}\right), 2.15$ $\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{xCH}_{3}\right), 2.30\left(2 \mathrm{H}, \mathrm{t}, 7-\mathrm{CH}_{2}\right), 2.55\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{CH}_{2}\right), 5.45[2 \mathrm{H}$, br, NH_{2} (exch.)], 7.08 ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$), $7.25(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 8.18$ ($1 \mathrm{H}, \mathrm{s}, 10-$ H) and $8.30\left[1 \mathrm{H}, \mathrm{br}, \mathrm{NH}\right.$ (exch.)]; m / z (rel intensity) $310\left(\mathrm{M}^{+}, 13\right)$, 309 (22), 295 (100), 280 (44), 268 (24), 165 (30), 133 (23), 77 (22), 69 (36) and 57 (37) [Found: C, 65.80; H, 5.76; N, 18.10. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{~S}$ requires $\mathrm{C}, 65.81 ; \mathrm{H}, 5.81 ; \mathrm{N}, 18.06 \%$]

12-Imino-2-methyl-6,7,11,12-tetrahydro-5H-benzo[3',4']cyclohepta[$\left.2^{\prime}, 1^{\prime}: 4,5\right]$ thieno[2,3-d]pyrimidin-11-amine (7b): yield (0.425 g, 89%), m.p. $165-169^{\circ} \mathrm{C} ; \mathrm{v}_{\text {max }}(\mathrm{KBr}): 3325,3300,3220\left(\mathrm{NH}_{2}, \mathrm{NH}\right)$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}: 2.00-2.10\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{CH}_{2}\right), 2.25\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.30(2 \mathrm{H}, \mathrm{t}$, $\left.7-\mathrm{CH}_{2}\right), 2.58\left(2 \mathrm{H}, \mathrm{t}, 5-\mathrm{CH}_{2}\right), 5.50\left[2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right.$ (exch.)], 7.05-7.30 $(3 \mathrm{H}, \mathrm{m}$, aromatic), $8.28(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H})$ and $8.32[1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$ (exch.)]; m / z (rel intensity) $296\left(\mathrm{M}^{+}, 11\right), 295(16), 281$ (98), 266 (100), 254 (60), 224 (33), 165 (20), 69 (23) and 57 (29) [Found: C, 64.82; H, $5.35 ; \mathrm{N}, 18.90 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}$ requires C, 64.86; H, 5.40; N, 18.92\%].

12,13-Dimethyl-9,10-dihydro-8H-benzo[3', 4']cyclo-hepta[2',1':4,5]thieno[3,2-e] [1,2,4]triazolo[1,5-c]pyrimidine (8a): A mixture of compound $7 \mathrm{a}(0.07 \mathrm{~g}, 0.22 \mathrm{mmole})$ triethyl orthoformate $(0.27 \mathrm{ml})$ and dimethyl formamide $(0.27 \mathrm{ml})$ was heated on a water bath for 4 h and worked-up in the usual way. Purification was by preparative TLC giving solid material $8 \mathbf{a}(0.03 \mathrm{~g}, 41 \%)$, m.p. $122-125^{\circ} \mathrm{C} ; \lambda_{\text {max }}(\mathrm{EtOH}): 317 \mathrm{~nm} ; \delta_{\mathrm{H}}: 2.40-2.48\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{CH}_{2}\right)$, $2.52\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{CH}_{3}\right), 2.72\left(2 \mathrm{H}, \mathrm{t}, 8-\mathrm{CH}_{2}\right), 2.90\left(2 \mathrm{H}, \mathrm{t}, 10-\mathrm{CH}_{2}\right), 7.20$ $(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 7.70(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 8.38(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $9.30(1 \mathrm{H}, \mathrm{s}$, $2-\mathrm{H}) ; m / z$ (rel intensity) $320\left(\mathrm{M}^{+}, 100\right), 305$ (25), 280 (24), 71 (37) and 57 (56) [Found : C, $67.45 ; \mathrm{H}, 5.05 ; \mathrm{N}, 17.45 . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}$ requires C, $67.50 ; \mathrm{H}, 5.00 ; \mathrm{N}, 17.50 \%]$

13-Methyl-9,10-dihydro-8H-benzo[3',4']cyclohepta[$2^{\prime}, 1$ ':4,5] thieno[3,2-e][1,2,4] triazolo[1,5-c]pyrimidine (8b): yield (0.035g, 56%), m.p. $105-106^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH}): 309 \mathrm{~nm} ; \delta_{\mathrm{H}}: 2.40-2.48(2 \mathrm{H}, \mathrm{m}$, $\left.9-\mathrm{CH}_{2}\right), 2.52\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.72\left(2 \mathrm{H}, \mathrm{t}, 8-\mathrm{CH}_{2}\right), 2.90\left(2 \mathrm{H}, \mathrm{t}, 10-\mathrm{CH}_{2}\right)$, $7.20-7.35(2 \mathrm{H}, \mathrm{d}, 11 \& 12-\mathrm{H}), 7.70(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}) ; 8.38(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $9.30(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (rel intensity) $306\left(\mathrm{M}^{+}, 49\right)$, 291 (25), 85 (41), 71 (62), 57 (94) and 44 (100) [Found : C, 66.62; H, 4.52; N, 18.25. $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~S}$ requires C, 66.67; H, 4.57; N, 18.30\%].

9a: Reaction of 12-imino-2,3-dimethyl-6,7,11,12-tetrahydro5 H -benzo[$3^{\prime}, 4^{\prime}$ ']cyclo-hepta[2', $\left.1^{\prime}: 4,5\right]$ thieno[2,3-d]pyrimidin-11-amine (7a) with acetic anhydride. The compound 7a $(0.093 \mathrm{~g}, 0.3 \mathrm{mmole})$, acetic anhydride $(0.15 \mathrm{ml})$ and glacial acetic acid $(1 \mathrm{ml})$ were heated under reflux together for 6 h and worked-up in the usual way. It was a mixture of two compounds (TLC). The mixture was separated by preparative TLC (elution with 2% ethyl acetate, petroleum ether). The first band comprised 2,12,13-trimethyl-9,10-dihydro- 8 H benzo[3',4']cyclohepta[2', 1':4,5]thieno[3,2-e][1,2,4]tria-zolo[1,5-c]pyrimidine 9a (40 mg, 43\%), m.p. $158-160^{\circ} \mathrm{C}$; $\lambda_{\text {max }}(\mathrm{EtOH}): 315 \mathrm{~nm} ; \delta_{\mathrm{H}}: 2.30(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{CH} 3), 2.35-2.40$ $\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{CH}_{2}\right), 2.60\left(2 \mathrm{H}, \mathrm{t}, 8-\mathrm{CH}_{2}\right), 2.62\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 2.80$ $\left(2 \mathrm{H}, \mathrm{t}, 10-\mathrm{CH}_{2}\right), 7.05(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 7.62(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H})$ and $9.10(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (rel intensity) $334\left(\mathrm{M}^{+}, 11\right), 310(16)$, 268 (41), 97 (16), 85 (44), 71 (64), 57 (100) and 44 (66) [Found : C, $68.24 ; \mathrm{H}, 5.35 ; \mathrm{N}, 16.75 . \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{~S}$ requires C, $68.26 ; \mathrm{H}, 5.39 ; \mathrm{N}, 16.77 \%$]. The second band ($20 \mathrm{mg}, 19 \%$) was N1-[12-imino-2,3-dimethyl-6,7,11,12-tetrahydro-5H-benzo[3',4']cyclohepta[2',1':4,5]thieno[2,3-d]pyrimidine-11yl]acetamide 10a, m.p. $225-228^{\circ} \mathrm{C}, \mathrm{v}_{\max }(\mathrm{KBr}): 3236(=\mathrm{NH})$, $3187(\mathrm{NH}), 1659(-\mathrm{CO}-\mathrm{NH}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}^{\max } 2.10-2.20(2 \mathrm{H}, \mathrm{m}, 6-$ $\left.\mathrm{CH}_{2}\right), 2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{x}-\mathrm{COCH}_{3}\right), 2.40\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{xCH}_{3}\right), 2.55(4 \mathrm{H}$, t, $\left.5-\& 7-\mathrm{CH}_{2}\right), 7.02(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.24(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 7.65[1 \mathrm{H}$, $\mathrm{br},=\mathrm{NH}$ (exch.)], $8.35(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H})$ and $11.23[1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$ (exch.)]; m / z (rel intensity) $352\left(\mathrm{M}^{+}, 5\right), 348$ (29), 334 (100), 319 (32), 71 (41), 57 (60) and 44 (83) [Found: C, 64.75; H, 5.65; N, 15.95. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}$ requires $\mathrm{C}, 64.77 ; \mathrm{H}, 5.68$; N , 15.91\%].

2,13-Dimethyl-9,10-dihydro-8H-benzo[3',4']cyclohepta[$2^{\prime}, 1$ ':4,5]thieno[3,2-e][1,2,4]triazolo[$\left.1,5-\mathrm{c}\right]$ pyrimidine (9b): Yield ($0.04 \mathrm{~g}, 41 \%$), m.p. $145-148^{\circ} \mathrm{C} ; \lambda_{\text {max }}(\mathrm{EtOH}): 306$ $\mathrm{nm} ; \delta_{\mathrm{H}}: 2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.35-2.40\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{CH}_{2}\right), 2.60$ $\left(2 \mathrm{H}, \mathrm{t}, 8-\mathrm{CH}_{2}\right), 2.60\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right) 2.80\left(2 \mathrm{H}, \mathrm{t}, 10-\mathrm{CH}_{2}\right)$, $7.05-7.55(3 \mathrm{H}, \mathrm{m}$, aromatic) and $9.10(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (rel intensity) $320\left(\mathrm{M}^{+}, 90\right), 305(26), 148$ (10), 97 (10), 84 (100) and 51 (47) [Found : C, 67.55; H, 5.07; N, 17.55. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}$ requires $\mathrm{C}, 67.50 ; \mathrm{H}, 5.00 ; \mathrm{N}, 17.50 \%$].
N1-[12-imino-2-methyl-6,7,11,12-tetrahydro-5H-benzo[3',4']cyclohepta[2',1':4,5]thieno[2,3-d]pyrimidine-11yl]acetamide (10b): Yield ($0.02 \mathrm{~g}, 19.5 \%$), m.p $210-214^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}): 3236(=\mathrm{NH}), 3185(-\mathrm{NH}), 1660(-\mathrm{CO}-\mathrm{NH}) \mathrm{cm}^{-1}$; $\delta_{\mathrm{H}}: 2.10-2.20\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{CH}_{2}\right), 2.25\left(3 \mathrm{H}, \mathrm{s},-\mathrm{COCH}_{3}\right), 2.35$ $\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{3}\right), 2.50\left(4 \mathrm{H}, \mathrm{t}, 5\right.$ \& $\left.7-\mathrm{CH}_{2}\right), 7.05-7.32(3 \mathrm{H}, \mathrm{m}$, aromatic), $7.60[1 \mathrm{H}, \mathrm{br},=\mathrm{NH}$ (exch.)], $8.30(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H})$ and $11.20\left[1 \mathrm{H}, \mathrm{br}, \mathrm{NH}\right.$ (exch.)]; m / z (rel intensity) $338\left(\mathrm{M}^{+}, 10\right)$, 320 (8), 296 (24), 254 (31), 127 (17), 71 (99) and 57 (100) [Found: C, 63.85; H, 5.29; N, 16.50. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}$ requires C, 63.90; H, 5.32; N, 16.56\%].

2-(4-Chlorophenyl)-12,13-dimethyl-9,10-dihydro-8Hbenzo[$3^{\prime}, 4^{\prime}$]cyclohepta [2',1':4,5]thieno[3,2-e][1,2,4]triazolo [1,5-c]pyrimidine (11a): A mixture of $7 \mathbf{7 a}(0.1 \mathrm{~g}, 0.33 \mathrm{mmole})$ 4-chlorobenzaldehyde ($0.046 \mathrm{~g}, 0.33 \mathrm{mmole}$) and pyridine (1 ml) was heated under reflux for 2.5 h . After usual work up afforded the oily compound which was purified by preparative TLC to give 11a ($30 \mathrm{mg}, 41 \%$), m.p. $155-158^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}: 2.30-2.32$ ($2 \mathrm{H}, \mathrm{m}, 9-\mathrm{CH}_{2}$), $2.40\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{CH} 3\right.$), $2.60\left(2 \mathrm{H}, \mathrm{t}, 8-\mathrm{CH}_{2}\right)$, $2.85\left(2 \mathrm{H}, \mathrm{t}, 10-\mathrm{CH}_{2}\right), 7.10-8.20(6 \mathrm{H}, \mathrm{m}$, aromatic) and 9.20 $(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (rel intensity) $430\left(\mathrm{M}^{+}, 26\right), 432\left(\mathrm{M}^{+}+2\right.$,
10), 390 (50), 253 (41), 127 (36), 71 (99) and 57 (100) [Found: C, 66.95; H, 4.40; N, 13.00. $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{~S}$ requires C, 66.98; H, 4.42; N, 13.02\%].

2-(4-Chlorophenyl)-13-methyl-9,10-dihydro-8Hbenzo[$\left.3^{\prime}, 4^{\prime}\right]$ cyclohepta[$2^{\prime}, 1$ ' $: 4,5$ thieno[3,2-e][1,2,4]triazolo [1,5-c]pyrimidine (11b): Yield (43 mg, 31\%), m.p. $148-150^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}: 2.28-2.30\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{CH}_{2}\right), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.50\left(2 \mathrm{H}, \mathrm{t}, 8-\mathrm{CH}_{2}\right), 2.80\left(2 \mathrm{H}, \mathrm{t}, 10-\mathrm{CH}_{2}\right), 7.00-7.65(7 \mathrm{H}, \mathrm{m}$, aromatic) and $9.1(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$; m / z (rel intensity) $416\left(\mathrm{M}^{+}\right.$, 45), $418\left(\mathrm{M}^{+}+2,19\right), 376$ (82), 278 (13), 149 (43), 85 (44), 71 (62) and 57 (100) [Found: C, 66.38; H, 4.05; N, 13.40. $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{~S}$ requires C, $66.35 ; \mathrm{H}, 4.09 ; \mathrm{N}, 13.46 \%$].

Received 23 April 2000; accepted 20 August 2000
Paper 00/291

References

1 B.S. Holla, Kalluraya, K.R. Sridhar, E. Drake, L.M. Thomas, K.K. Bhandary and M.J. Levine, Eur. J. Med. Chem., 1994, 29, 301.; R.H. Bradbury and J.E. Rivett, J. Med. Chem., 1991, 34, 151; H.A.R. Prasad, T. Ramalingam, A.B. Rao, P.V. Diwan and P.B. Sattur, Eur. J. Med. Chem., 1989, 24, 199.

2 S.S.F. Burni, A. Castanzo, G. Guerrini, P.M. Ajello, G. Iavstrone and C. Martini, Eur. J. Med. Chem., 1992, 27, 985.
3 V. Peesapati and N. Lingaiah, Org. Prep. Proced. Int., 1993, 25, 602.

4 V. Peesapati and K. Anuradha, Indian J. Chem., 1996, 35B, 1287.
5 D.J. Brown, B.T. England and J.S. Harper, J. Chem. Soc.(C), 1996, 1165; D.J. Brown, Nature, 1961, 189, 828.
6 C.L. Anderson, W.J. Horton, F.E. Walker and M.R. Weiler, J. Am. Chem. Soc., 1955, 77, 598.

[^0]: * To receive any correspondence.
 ${ }^{\dagger}$ This is a Short Paper, there is therefore no corresponding material in J Chem. Research (M).

